Langchain

任务规划 | Middleware 中间件 | 产品经理学Langchian | 第14篇

To-do list中间件为AI智能体提供任务规划与跟踪能力,让AI智能体能够将复杂任务拆解成多个子任务,创建待办清单,并在执行过程中跟踪进度、调整计划。这样,AI智能体就能更有条理地处理复杂任务,用户也能清楚地了解任务进展。

敏感信息检测 | Middleware 中间件 | 产品经理学Langchian | 第13篇

在实际应用中,用户可能会在对话中输入各种敏感信息:邮箱地址、信用卡号、身份证号、手机号等。如果这些信息被直接发送给AI模型,或者记录在日志中,就可能存在泄露风险。
PII检测中间件就是为了解决这个问题而设计的。它可以在对话流程中自动检测敏感信息,并根据预设的策略进行处理:脱敏、掩码、哈希或直接阻断,确保敏感信息不会被泄露,同时满足合规要求。

调用限制 | Middleware 中间件 | 产品经理学Langchian | 第11篇

AI智能体可能会因为理解错误、逻辑问题或者其他原因,不停地调用模型或工具,就像陷入了死循环。这不仅会消耗大量资源,产生巨额费用,还可能导致系统负载过高,影响正常使用。调用次数限制中间件就是为了防止这种情况发生。通过设置调用次数的上限,一旦超过限制就停止执行,有效控制成本和风险。

Middleware 中间件概述 | 产品经理学Langchian

智能体在实际应用中,仅依靠 “模型 + 工具” 的基础架构难以应对复杂需求,会面临多个难题。而中间件的核心作用,就是通过模块化、可配置的组件,针对性解决上述痛点,让智能体从 “基础可用” 升级为 “生产级可靠”。

Structured output | 产品经理学Langchian

LangChain 的结构化输出功能允许智能体(Agent)以特定、可预测的格式返回数据,无需解析自然语言响应,直接生成 JSON 对象、Pydantic 模型或数据类(dataclasses)等可被应用直接使用的结构化数据。

Streaming | 产品经理学Langchian

流式传输对于Agent响应性至关重要。通过逐步显示输出,甚至在完整响应准备好之前就开始显示,流式传输显著改善了用户体验(UX),尤其是在处理大语言模型的延迟问题时。

Short-term memory | 产品经理学Langchian

对话历史是最常见的短期记忆形式。Short-term memory(STM)常用于在单个线程内保存对话历史,让 Agent 记住最近的交互、反馈与工具结果,从而保持上下文连贯。太长的内容可能让大模型痛失焦点,同时还会面临响应速度变慢和成本增加的问题。

滚动至顶部